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DESIGN PROCEDURE FOR SATISFYING TIME DOMAIN BOUNDS

FOR NONMINIMUM-PHASE SYSTEMS

Abstract--This paper presents two design techniques

applicable to nonminimum-phase systems. Both are de-

signed to handle plants with one right-half-plane zero

which may vary and any other variation of the plant

parameters within known limits. The specifications

that must be designed to are given as a set of step

response bounds in the time domain. A completed de-

sign will yield responses that stay within the time

domain bounds at all times and utilize the entire

region of allowed variation.

The first method is an analytic one which finds an

equivalent set of minimum-phase step response bounds.

Once these are found, current design techniques may be

used to complete the design. This method can be ex-

tended easily to design for multiple right-half-plane

zeros, but the actual design will be very complicated

for this problem. When there is variation of the

right-half-plane zero, this method requires many de-

signs before the best one is found. For these reasons,

this method is not very useful.



The second method makes a direct transfer of the

time domain bounds to the frequency domain. From these

new boundaries and other resulting specifications, a

worst case zero is found that will yield a design that

is satisfactory as the zero varies. This method is

thoroughly derived and explained for a plant with one

right-half-plane zero and the plant does not depend on

the position of the zero in any other way. These de-

sign techniques are the first contributions to the non-

minimum-phase problem.
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CHAPTER I

INTRODUCTION

1.1 Problem Statement

The purpose of this paper is to present two methods

of design which are applicable to nonminimum-phase prob-

lems. Both methods are thoroughly derived for one right-

half-plane zero and the extensions are indicated in the

first method to handle multiple right-half-plane zeros.

One method of design is analytical whereas the other is

best suited to digital computer implementation. Both

methods do permit insight into the means of design. The

program utilized in the computer implementation of the

second example is in the appendix.

The problem specifications are given in general as

a set of time domain boundaries within which the final

step response must remain at all times. There may be

ignorance in the right-half-plane zero(s) and in any

other parameters the plant may contain. The only thing

known about the parameters are the limits that they are

permitted to vary within. The rate of parameter varia-

tion is assumed to be slower than the system response

time so time dependence of the parameters may be neg-

lected. A successful design will yield satisfactory step

responses for all possible sets of plant parameters.
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The step response boundaries are unique because

they restrict the initial undershoot that must occur in

a nonminimum-phase system. The optimum design will per-

mit step responses that utilize the entire allowed re-

gion of variation, both negative and positive. In this

way the compensation is not more than it needs to be in

complexity and bandwidth.

The feedback structure used in the design is a two

degree of freedom structure shown in figure 1.1. A two

degree of freedom structure is used because both sensi-

tivity and minimum bandwidth must be designed for. The

feedback structure is required to meet the sensitivity

constraints, i.e., the plant variation cannot result in

more variation in the step response then allowed by the

step response boundaries. The prefilter F will adjust

the bandwidth to the minimum allowed so as to make the

system as immune to noise as possible.

R(s) +
F(s) G(s) -P(s) C(s)

L(s) - G(s)P(s)

T(s) m Cas) n F(s)L(s)R8 1"+ L (s)

Figure 1.1 Closed Loop Structure
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1.2 History of the Problem

Right-half-plane zeros occur in many circumstances.

Some examples are where there are multiple channels over

which information can be passed, lattice networks, trans-

mission lines, piping-flow delays, transportation lags,

semiconductor diffusion [1], heat exchangers, mercury

thermometers [2], and in aircraft control [3]. The pre-

sence of a right-half-plane zero greatly affects the

stability conditions of a design. The loop transmission

cannot be allowed to decrease too quickly or the addi-

tional phase lag will be so great as to cause condition-

al or complete instability. In a stable nonminimum-

phase system, there is an upper limit to the crossover

frequency [4]. A nonminimum-phase system is one that

has a zero in the right half of the s-plane. Nonminimum-

phase systems are slow in response because they initial-

ly go in the wrong direction [5]. A magnitude plot will

completely determine the transfer function of a minimum-

phase system, but both magnitude and phase plots are re-

quired for a nonminimum-phase system.

These considerations make the design for a non-

minimum-phase plant a unique one, and from the areas

where the problem arises it is an important one. In-

spite of this, there is no design technique available

for the solution of this problem.
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1.3 Method of Approach

There is a design procedure presented in a paper

written by Horowitz and Sidi which can formulate a de-

sign for a plant with parameter variations from a set

of minimum-phase time domain bounds [6]. The first method

presented here solves for the set of minimum-phase bounds

equivalent to the given set of nonminimum-phase bounds.

That is, a design meeting the minimum-phase bounds will

also meet the nonminimum-phase ones. The minimum-phase

bounds are found by solving the differential equation

relating them to the nonminimum-phase bounds. Because the

goal of this method is to yield an equivalent set of

minimum-phase time domain specifications, this method is

called the "time domain method." The remainder of the

design is completed by the above procedure.

The second method approximates the transfer function

by a third order function and finds a set of boundaries

on the allowed variation of the magnitude of the transfer

function in the frequency domain. This is done by taking

the composite of the Bode plots of many transfer func-

tions which have satisfactory step responses. It was

found that a design for the smallest right-half-plane

zero and the lowest set of specifications found above

will be satisfactory as the right-half-plane zero

varies. Since the design is carried out for a fixed po-

sition of the zero, a magnitude plot will be sufficient
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to describe the transfer function. Thus, once the trans-

formation to the frequency domain is carried out, the

Horowitz and Sidi design technique can be used to com-

plete the design.



CHAPTER II

TIME DOMAIN METHOD

2.1 Motivation of Method

Horowitz and Sidi have written a paper [6] which

presents a design method utilizing a set of minimum-

phase step response boundaries. One design approach for

a set of nonminimum-phase time domain boundaries is to

start by finding an equivalent set of minimum-phase

tolerances and applying the Horowitz and Sidi method to

these tolerances to complete the design. This transfor-

mation can be made by solving the differential equation

relating the nonminimum-phase (nmp) transfer function

and its minimum-phase (mp) component. This method will

be known as "the time domain method" because its goal is

to yield an equivalent set of mp time domain specifica-

tions and is not concerned with the techniques used to

complete the design once the equivalent bounds are found.

2.2 Technique

If there is only one right-half-plane (RHP) zero,

the transfer function may be written as

T(s) = T (s)(1 - s)m a

where T (s) is the minimum-phase portion of T(s), and

"a" is the location of the RHP zero. If the input is
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R(s) = - , a unit step, then the output response C(s),

assuming zero initial conditions, can be written as

T (s) - T (s) (s)
C(s) = R(s)T(s) T(s) m m

s s

C(t) = Cm(t) - _ C (t)m a m

where the roles of R(s), C(s), and T(s) are clarified

in figure 2.1 and

This means:

C(s) C (0)
C (s) = a m (2.1)

a

for the general case when there are initial conditions.

This equation points out that an initial condition

is required to solve for the mp set of step response

bounds. A point is required where both the mp and nmp

responses are known or the same so the initial condition

can be solved for. This is a point where the response

has settled to a constant. Start at this point and work

backwards solving for the initial conditions. An ini-

tial condition is required at every time when the nmp

boundary is discontinuous.
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2.3 Example of Design Method

To demonstrate the technique the equivalent mp

boundaries for the nmp ones in figure 2.1 will be found.

The results are shown dotted in figure 2.1, the mp

bounds. From t2 to t4, the upper bound is constant at

1 + a. The equivalent mp boundary can be found by solv-

ing equation 2.1. The initial condition at t2 can be

solved for by knowing that at t4 both the mp and nmp

boundaries must equal one. From equation 2.1:

l+a 1 C (0)
C(s) s a m
m s

a

minimum-phasef
C(t) phase

Figure 2.1 Hypothetical set of nonminimum-phase bound-

aries and equivalent set of minimum-phase

bounds.



which yields

Cm(t) = 1 + a - (1 + a - Cm(t2))ea(t-t2)

To solve for C (t2) , the initial condition, one can

solve the equation at a point where Cm(t) is known, t4.

(t4- t2 )aCm(t) = 1 = 1 + a - (1 + a - C (t 2 ))e

which yields

-a(t 4 -t 2)
C (t 2) = 1 + a - ae

Thus the value at t2 is known and can be used to solve

for the value at t = 0 and thus specify the entire upper

bound. For this region:

d Cm(0)
- a

C (s) = sm s
a

which yields

Cm ( t )  d + dt - (d C (0))atm a a m

-a(t 4-t 2) at2

Cm(t 2 ) = 1 + a - ae -a(t dt - C (0))eat2
m 2 a 2. a m

[ -a(t4-t2) d eat
Cm(0) = 1 + a - ae-a(t4 - (2 d + dt2) e-at2 +d

Now the entire equivalent mp upper boundary is known.

The same method is utilized to find the mp lower

bound. Starting at t4 as before:
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1-8 Cm(0)

Cm(S) = s a

a

a(t-t 3)
C (t) = 1 - - (1 - - C (0))em m

a(t 4 -t 3)
Cm (t 4 ) = 1 = 1 - 8 - (1 - a - C (t ))e

-a(t 4 -t 3 )
Cm(t 3 ) = 1 - 8 + Be

now for tl < t < t3

C(t) = dt - A

d A Cm()
2 s a

c (S) = sm s
a

d d a(t-tl)
C (t) = A + dt + [A - + C (t )em a a m

-a(t 4 -t 3)
Cm(t 3 ) = 1 - 8 + Be

da(t3-tl)
= - - A + dt + [A - + C (t )]e
a 3 a m 1

(t -a(t4-t 3 -a (t3-t 1 )Cm (tl) = d - A + A - - + 8e em a a

for the boundary from 0 < t < tl

Cm(0)
Cm(s) = s a

a



C (t) = - A + (A + C (0))eat

Cd (td + -a(t4-t 3 -a(t 3-t 1)C (tl) = A + d + Be e
m  a - a

at
= - A + (A + C (O))em

d d -tt -a(t- t3-tl)-atl
Cm(0) = A + + - a + ee e 3 1 et 1

Each of these equations, with the initial conditions

substituted into their proper place, yield the complete

set of mp boundaries shown in figure 2.1. The Horowitz-

Sidi technique could now be applied to these boundaries

to complete a design.

Because the problem is a nonminimum-phase one,

designing to this set of bounds is not sufficient to

insure a satisfactory response. A set of frequency based

magnitude specifications alone is not enough to control

the response. From the equation describing the response

due to one RHP zero, C(t) = C (t) - 1 Cm(t), it is clear

there must also be bounds on the derivative of the

minimum-phase response to insure satisfactory nmp res-

ponses. If both Cm(t) and Cm(t) fall within their bounds,

C(t) will also satisfy its specifications. This second

set of boundaries is easily derived from the boundaries

already found. It is found by solving this equation

where all variables are known:
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Cm(t) = a[Cm(t) - C(t)]

Using the Horowitz and Sidi technique on these two

sets of tolerances will yield a design for the original

set of bounds. This is a fairly direct method for de-

signing to a set of nonminimum-phase specifications as

long as there is no ignorance in the position of the

RHP zero. If there is a range of positions where the

RHP zero could be, designs must be made over the entire

range and the design that meets all conditions must be

chosen. This would mean doing many designs before the

-needed one is found. The only time this would be un-

necessary is when a worst-case set of specifications

could be designed for and this design would be satis-

factory for all other possible positions of the RHP

zero. Since a worst-case would not be obvious, many de-

signs would probably be required for each set of bounds.

This is not a practical method of design when there is

ignorance in the RHP zero.

2.4 Method's Worth

This method becomes very impractical when there are

multiple RHP zeros that must be designed for. More and

more sets of boundaries are required to specify the al-

lowed variation of each additional derivative that is

required as the number of RHP zeros increase. Not only

do the number of boundaries increase, but the equations
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that must be solved to find the boundaries become in-

creasingly complex. Thus, for multiple zeros, the method

becomes much too complicated and involved to be useful.

This method holds little promise for a more general solu-

tion because of the increasing difficulty with more than

one RHP zero.



CHAPTER III

FREQUENCY DOMAIN METHOD

3.1 Introduction

This method is to enable a priori design to meet

the nonminimum-phase (nmp) tolerances specified. It was

to be similar to the procedure used to design for

minimum-phase systems (mp) except both magnitude and

phase tolerances of the frequency response must be

studied, but a simplifying discovery was made during

the investigation. This will be clarified later in this

section. In a mp system, the magnitude uniquely defines

the transfer function, but in the nmp system this is

only true if the position of the RHP zero is known. If

a design procedure utilizes both the magnitude and

phase tolerances of the frequency response, several

designs will not be required as was true with the time

domain method.

3.2 Method

The first step of this method is to transfer the

nmp step response bounds into magnitude and phase bounds

in the frequency domain. This is accomplished by approxi-

mating whatever the final transfer function may be by

the following: 2
w bn-- (s-a)

T(s)= a (3.1)
(s+b)(s + 2zw s + Wn)

n n
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If "a" takes on the values of the RHP zero of the plant

and z and wn are allowed to vary over many values, many

representative step responses can be examined to see

which ones satisfy the required time domain boundaries.

A computer program called TEST2 has been written to per-

form this task. It varies all the parameters of the

transfer function and finds all the responses which fall

within the input time domain bounds. The bounds are de-

scribed by a series of "if statements." All parameter

sets yielding satisfactory responses and the parameters

whose responses "hit" the boundaries are printed out.

These "hits" are stored and when many are found, they

are used to approximate the time domain bounds by equi-

valent frequency domain tolerances, magnitude and phase.

The maxima and minima composite curves and their dif-

ference are printed. This allowed variation of IAT(jw)I

is what is required to use the Horowitz and Sidi method

of design.

3.3 Examination of Method

To examine the method and to gain insight into

what is really necessary to complete a design, various

phases of the general method will be examined. For this

a useful set of step response boundaries must be found.

These bounds would be given as specifications in a real

problem. To accomplish the above, the far pole in
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equation 3.1, (b) is set at -20, and wn and z were made

one for a critically damped system. The RHP zero (a) was

set at 10 so as to have little effect on the step res-

ponse. A set of boundaries were than centered about this

response. The boundary size was then adjusted to include

some responses and to exclude others. The boundaries had

to be narrow enough so the boundaries are not trivial

and cannot be exceeded, but wide enough so they are not

impossible to meet. The TEST2 program was run for the

set of bounds shown in figure 3.1 with a RHP zero at

.75, 1.0, 1.5, 3.0, or 8.0. Figures 3.2, 3.3, and 3.4

show the output plots of the allowed magnitude variation,

the allowed phase variation, and the acceptable regions

of LHP pole variation that yield satisfactory step res-

ponses.

The curves for allowed phase variation are explained

by their region of acceptable pole variations. Since the

phase variation is entirely due to the pole variation, a

plot was made for the phase due to the pole locations

possible in figure 3.4 and is shown in figure 3.5. The

frequencies where the poles may be on the Bode plot

account for the behavior of the phase curves. These phase

curves will not be required in the final design method

since only one value of the RHP zero will be designed

for. Since its position is known, magnitude alone is

sufficient to determine the transfer function. Since the
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curves do agree with what is expected though, they do

serve a purpose in that they verify the program's

validity.

The regions of acceptable pole variation (figure

3.4) get larger as the RHP zero moves further out, only

up to a certain point, then they start getting smaller.

The behavior of these curves must be explained. First,

the lower portions of the bounds will be examined. A

transfer function with a RHP zero far from the origin

will have little undershoot and will approach a minimum-

phase system. One with a RHP zero very close to the

origin will have a very large undershoot. The allowable

regions for the complex poles relate to the speed of

the system responses for various zeros. Clearly, a sys-

tem with a RHP zero at one will require a faster res-

ponse than one with the zero at ten in order not to

violate the lower response boundary (figure 3.6). This

means a slower system, smaller wn, will be acceptable

with the RHP zero further out. This means that as the RHP

zero moves further from the origin, pole variation is

allowed at lower frequencies. This explains the lower

portion of the region.

The equation relating the mp and nmp responses

must be examined to explain the behavior of the upper

boundary. As long as the lower response bound is the

one that will be violated, Cm(t) must be kept small for

a zero close to the origin in the equation
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1 *C(t) = C (t) - C (t)m a m

If the zero is qlose to the origin, is large, there-

fore to make sure the undershoot does not violate the

lower bound, the response must be slow to keep Cm(t)

small. If the zero were further out, "a" is larger,

then Cm(t) can be larger without violating the lower

bound. Therefore, while the lower bound is still the one

being violated, the allowable region increases in size

as the RHP zero moves further out, a faster response is

allowed.

Wn= 1
C(t) a=10

a=10

n

W / /

a=l

Figure 3.6 Lower Bound Violation by Nonminimum-

Phase Responses
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At some point the response will be so fast, it will

violate the upper bound. This occurs as the zero goes

far enough out to allow a response that rises faster

than the upper boundary does. This has been verified by

examining various responses to see which portions of the

boundaries are violated. When this starts to occur, the

allowed pole variation regions begin to close in. The

regions begin getting smaller when the upper boundary

becomes the critical one. Figure 3.7 shows that the res-

ponse with a RHP zero at one will be satisfactory, where-

as the response with the zero at ten will be unsatisfac-

tory. As "a" increases now, the system must be slower to

prevent violation of the upper boundary.

C t) -nonminimum-phase

a=10

Figure 3.7 Upper Bound Violation
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3.4 Design for Worst Case

Given a set of lATldb variation curves as shown in

figure 3.2, can a design for a certain set of specifica-

tions and one location of the RHP zero be satisfactory

as the position of the RHP zero changes? Consider a

plant P(s) which can be written as P(s) = P (s)(s-a),

where P (s) is independent of "a", the RHP zero. In

using the Horowitz and Sidi design technique, it is

necessary to have a plant template which can be used in

connection with the Nichols Chart to design a compensa-

tion G. To gain insight into the effect of the RHP zero,

use a plant template for each value of "a". For increas-

ing values of "a"

P(s) = P (s)(s-a)

P(jw) = P (j) ow +a 180 - tan 1

this equation clearly shows that both the magnitude and

phase of the term (s-a) increases. This means that if a

plant template is made for each value of "a" the tem-

plates will be identical but will have greater magnitude

and phase positions with increasing "a" (figure 3.8).

The worst case that can be designed for is when.the

specifications are the same over the range of RHP varia-

tion. In this case the same variation must be met whereas

other times, as the zero increases, more variation is

allowed (figure 3.2) and the control can be decreased for
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this case. Certainly the most difficult problem is when

the strictest set of specifications must be met over

the entire range of parameter variation.

If designs for the compensation G(s) were made

using the plant templates of figure 3.8, the same L(jw)

boundaries would result for both zeros if the same set

of worst-case IAT(jw) specifications were used. Figure

1.1 explains the meaning of G(s) and L(s). This happens

because the size and shape of the plant templates are

independent of the location of the RHP zero, only the -

plant template values vary ( IPi,Pi). The Nichols Chart

IPldb

SP1(JW)

1800 00 LPO

P1 (s) = P (s)(s-a1 )

P 2 (s) = P (s)(s-a2 )

where al < a2

Figure 3.8 Template Variation



27

boundary on L(jw) is found by sliding the plant template

along a constant phase line until it fits between the

L(j w.)
1+L (j) curves that correspond to the allowed varia-

tion in T(jw). Since the same template is used for var-

ious "a's", and the same variation in L(j ) is al-
1+LjU)

lowed, the same L(jw) boundaries will result. The com-

pensation G(jw) boundaries are found by:

IG(jw) Idb = IL(jw) db - jP(jw)ldb

IGl(jw)l db = jL(jw) db - IPl(jw)ldb

IG2 (jw) db = IL(jw) db - 1P2 ( w)ldb

from before IPI (jw) db < IP 2 (jw) db

which implies IPl(j) db + A = IP(j d b where A > 0 db.

IGl(jW)Idb + IPl(jw)Idb = IG2 (jw)ldb + IP 2 (jw)Idb

IGl(jw) db - A = IG2 (jw) db

which implies IGl(jw)ldb > IG2 (jw) db

The same argument also will yield /G1 (jw) > /G 2 (jw). On a

plot of IG(jw)I vs /G(jw), this means each corresponding

point on Gl(jw) will be higher and to the right of G2 (jw)

(figure 3.9). If Gl(jw) is above G2 (jw) at every point,

then a design for the smallest value of the RHP zero will

be satisfactory for all positions of the zero. If G1 (w)
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is lower than G2 (jw) at some phase angle, even though

each corresponding point is higher (figure 3.10), then

the design must be more complicated because more than

one location of the RHP zero must be designed for.

When the design is completed, one set of magnitude

and phase of L(jw) on the L(jw) boundary is realized.

The question whether the G(jw) boundaries cross as in

figure 3.10, is equivalent to asking another question.

Utilizing the compensation G(jw) that yielded the point

on the L(jw) boundary with one position of the RHP zero,

will the L(jw) found as the zero moves also be on or

above the L(jw) boundary? If the Gl(jw) used to get the

point L1 on the boundary is below the G2 (jw) boundary,

then the point L2 found with a2 and Gl(jw) is not neces-

sarily above the L(jw) boundary.

IG(jw) I G1 (jW)

G2 (jW)

-180 0 /G(jw)

Figure 3.9 Desirable G Boundaries
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IG(jw) I G

G2 (jW)

-180 0 /G (jw)

Figure 3.10 Undesirable G Boundaries

IL(jw) Idb

L-boundary

L210

L

L1

-180 -0 /L(j)

Figure 3.11 Possible Loop Transmissions
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It is known that if L1 is the L(jw) designed for

with Gl(jw) and al, that the resulting point L2 as the

zero moves to a2, where a2 > al, using the designed

compensation G1 will be above and to the right of L

on a IL(jw) vs /L(jw) plot. Whether L2 is above or be-

low the L boundary, L21 or L22 in figure 3.11, depends

on the lead added by (s-a) at that frequency by the in-

crease in "a" and the slope of the L boundary. For these

reasons it cannot be proven when it will or will not

happen, but an argument can be given that it will not

happen in most problems.

In the majority of problems specifications will not
al

be met at frequencies higher than w = _ , where "a1  is

the minimum RHP zero location. At frequencies much less

than "al", almost pure gain is added as the zero moves

out, eq. 3.2, 0.= This means that at frequencies

P(s) = P (s) (s-a) + P1 (jW)(1 - (3.2)

where w << a, the design for al will certainly be sa-

tisfactory for a2 . As w approaches al, more and more

lead is added as the RHP zero increases to a2. For most

plants, and an exception has yet to be found, the L

boundaries appear as in 3.12.

It is clear that if the phase added by the increase

in the RHP zero is to yield an L(jw) that falls below

the bounds, it would happen at low frequencies where the
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boundaries are most peaked. It is at these frequencies

though where the change is almost pure gain and there is

no problem. As the frequencies increase, it becomes

harder to be above some L1 and fall below the boundary

also since they flatten out and actually start going ne-

gative. Many examples have been tried and in all cases

a design for the smallest zero will be satisfactory as

the zero varies. This argument at least makes this

IL(JW) w << a1

a1

1r80s 0 0. L(j)

Figure 3.12 Typical L(jw) Boundaries
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theory more plausible and the examples fail to expose

any possible problem. A rigorous proof is not possible

since it depends on so many circumstances. Certainly if

the range of RHP zero variation is small or if the fre-

quency range requiring feedback is much smaller than the

smallest RHP zero, a design for the smallest RHP zero

will be satisfactory for all allowed positions of the

RHP zero. In the majority of problems this will be true.

A quick test would be to find all the G(jw) compensation

curves for possible RHP zero locations to see if the

G(jw) boundaries ever cross. No plant has been found yet

where this has happened.

Whatever the design, it must of course meet the

tightest set of specifications. Thus a design for the

smallest RHP zero and the lowest set of allowed IAT(jw)

specifications will meet the time response specification

as the RHP zero takes on other values. As shown in

figure 3.2, the smallest RHP zero also has the lowest

set of specifications. This is always true from low fre-

quencies up to some higher frequency where the specifi-

cations may cross, i.e., a design for ae[3,8], a=3 is

lowest until w = 3.5.

3.5 What are the Lowest Specifications

From figure 3.2, it is clear that the smallest RHP

zero has the lowest specifications at least at fre-

quencies where w < . From studying figure 3.13, a
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log W

Figure 3.13 Straightline Approximation of IATI where T(s) T* (s) (s-a)
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straight-line approximation of the IAT(jw) curves for

the regions of acceptable pole variation, figure 3.4,

some general rules may be found. First, the RHP zero, a1 ,

yields the lowest bounds at least until the frequency of

the maximum position of a varying pole if it is less

than the value of the RHP zero. If this frequency is

greater than the RHP zero, the smallest zero, al, will

yield the smallest IAT(jw) at least till w = al. The

smallest value of "a" will yield the lowest specifica-

tions at all frequencies if the allowed region of para-

meter variation of a2 encloses that of al, where al < a2.

This is shown by as[.75,1.0] in figures 3.2 and 3.4.

The specs for a = .75 are lower than those of a = 1 at

all frequencies, and the poles of a = 1 could vary at

lower and higher frequencies than those of a = .75.

These guidelines may help in deciding which RHP

zero yields the lowest specs over the frequency range

of interest. The surest way is to run program TEST2 on

several positions of the RHP zero and see what specifi-

cations are lowest. These specifications are required

in the design anyway.

For any set of specifications a design for the

smallest RHP zero will be satisfactory for all loca-

tions of the RHP zero. A design for the smallest set of

allowed variation specs on IAT(jw) will certainly be

satisfactory when more variation is allowed. Therefore,
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a design for the smallest RHP zero and the lowest set of

specs will yield satisfactory step responses as the zero

is allowed to vary.

3.6 When Cannot the Design Be Completed

One major drawback of a system with a RHP zero is

that the bandwidth is limited. This means that an ar-

bitrary set of sensitivity or disturbance specifications

are not realizable. Some plant and specification combi-

nations may require a large bandwidth, but this in turn

results in an unstable system. Therefore, it would be

nice to have some guidelines as to when the design can

or cannot be completed so a lot of time is not wasted

in trying to find a stable design when it is not possible

for there to be one.

One of the steps in the design is to ascertain the

frequency range over which feedback is required to meet

the specifications. This is done by seeing where the

curves of IAT(jw)I = IAP(jw)I. Up until wlIAP(jw)i >

IAT(jw) . This means feedback is required up to Wl to

constrain the variation of the transfer function due to

the plant variation to the specifications required in

IAT(j) I. The curve IAT(jw)I is obtained as before by

the program TEST2 which takes a composite Bode plot of

the transfer functions which yield satisfactory step

responses. The curve IAPI is the maximum difference be-

tween all the Bode plots of the plant as all parameters
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but the RHP zero vary.

The frequency where these curves cross roughly cor-

responds to the bandwidth of the system. If this fre-

quency is less than half the value of the smallest RHP

zero, the design can be completed satisfactorily. If
a

this frequency range is 2- < w < 2al, where "al is the

smallest RHP zero, the design may be completed, but it

will be very difficult to do if it can indeed be done.

If the crossover is at a frequency greater than twice

the smallest RHP zero, the design is impossible. This

should give a rough idea of how difficult a design is,

if it is possible.

Another means of judging if the design can be com-

pleted concerns the Nichols Chart. The loop transmission

can be written as:

L(s) = L1 (s)(s-a) (s-a) a L(s)(s+a) [-]
1(s+a) 1 s+a

L(s) = L m(s)A(s)

where A(s) is an all-pass function.

If figure 3.12 was the Nichols Chart boundaries on L(s),

a plot of those for Lm(s) would be shifted to the right

by the phase contributed by the all-pass function at each

frequency. If there is a disturbance in the system, it

must be damped out. The damping can be approximated by

a dominant pair of complex poles whose damping factor z

can be related to the disturbance overshoot allowed.
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This can then be related to a magnitude peaking curve

which yields a forbidden region on the Nichols Chart.

The region specifying the damping of a disturbance, the

ellipse-like shape in figure 3.12, will move also, but

it will be distorted because each point on it corres-

ponds to a different frequency. This is clear if the L

found wraps right around this region. Each point will

move a different amount because the all-pass contributes

a different amount of phase at each frequency.

If the last boundary corresponds to a frequency

w > 2al, the damping region will probably cross the zero

degree line, figure 3.14. When this happens, a design

IL(jw) I

a

1 -- < W < 2aW1 < 2 1 1a 1
w 1 > 2a

1 i

-100 -135 0  0o

Figure 3.14 Minimum-Phase Disturbance Regions
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cannot be made because it is not possible to come down

in magnitude any distance in decibels with phase lead.
1

If 1 < , it is clear a design can be found. If
a1

2a 1  > - , it will be more difficult to stay out-

side the disturbance region. This method of looking at

the problem yields the same results as before but by

being concerned with the damping of a disturbance signal.

If a lot of gain variation is present in the plant,

the last specification curve must be at wl << al, because

it will take a wide frequency range to clear the dis-

turbance region. This means that if wl was near al, the

disturbance region would almost certainly cross the zero

degree line, and probably over a large magnitude range.

This would definitely make the design impossible to com-

plete (figure 3.15).

IL(jw)

W1 boundary

-1800 -1350 00
Figure 3.15 Impossible Design Case
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3.7 Summary of Design Procedure

This section will present the design steps of the

proposed procedure. First, find the set of frequency

domain specifications on IAT(jw) by running a program

like TEST2 which approximates T(s) by a third order

function and searches for valid transfer functions.

Next, ascertain the set of specifications that will be

designed to, the zero designed for, and the frequency

where feedback is no longer required. This is usually

the smallest set of tolerances, the smallest possible

RHP zero, and the frequency where IAP(jwl ) = IAT(jwl ) .

With this information use the Horowitz and Sidi design

technique to find the boundaries on the loop transmis-

sion up to wl.

Now by some technique, possibly trial and error,

find an L(jw) that meets these requirements and yields

the desired amount of disturbance damping to the ac-

curacy desired. Knowing the plant and the loop transmis-

sion, the compensation G(s) can be solved for. With this

G(s) and the varying plant a set of actual IAT(jw)I

specs can be found. The prefilter F(s) can be solved for

which shapes the transfer functions to the same shape

and bandwidth of the specifications. This completes the

design and should yield satisfactory step responses.
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CHAPTER IV

FIRST EXAMPLE

Now that a design technique has been postulated,

it is necessary to work a meaningful example that will

test this postulate. The first step in postulating an

example is to have a valid set of time domain specifi-

cations. The specifications must be tight enough to make

the example meaningful, non-trivial, and yet not too

tight so as to make it impossible to complete the design.

This was accomplished by approximating the transfer

function by:

bw
2

- (s-a)
T(s) = a2 2

(s+b)(s + 2zwn s + W )

as was done in the earlier theory section. This approxi-

mates the transfer function essentially by the RHP zero

and a dominant pair of complex poles. As before, the

time domain bounds are centered around a critically

damped response of T(s) and then situating the bounds

so some responses are confined to the interior and other

responses exceed the bounds. The resulting bounds are

shown in figure 4.1.

To use the Horowitz and Sidi design technique a

set of IATIdb specifications in the frequency domain

are required. A program, TEST2, was written to vary z
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and wn in T(s) and find many T(s)'s whose step responses

satisfy the time domain specification. Frequency domain

plots of those that "hit" the boundaries yield the equi-

valent frequency domain bounds of the original time

domain specifications. The required IAT1 (jw)I specifica-

tions are the differences between the minimum and maxi-

mum plots at each frequency.

Specifications were obtained for several RHP zeros,

figure 3.2. Since the allowed IAT(jw) variation is al-

most the same for ae[l.5,8], it was decided to let the

RHP zero vary from one to eight so the theory would be

tested to the fullest by designing over a wide range of

allowed variation. That is, if the theory were wrong, it

should certainly fail when there is a large difference

in specifications over the allowed range of RHP varia-

tion.

There is a rule of thumb that the maximum obtain-

able bandwidth in a nonminimum-phase system is w = ,

where "a" is the position of the RHP zero. If the RHP

zero varied from .75 to 8. instead of 1 to 8, this would

mean feedback would be required over the range

wE[0,.375] and the tolerances for a = .75 allowed very

little plant variation. The remaining parameters of the

plant could not have any meaningful variation without

requiring a larger bandwidth. For these reasons a = 1

was chosen as the minimum RHP zero for this problem.
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By examining the allowed IATI variation a plant

was chosen which would not require feedback over w = .25
aor . The plant chosen was:

ae[1,8]s-aP(s) = s(s+b) , where
be[.015,.15]

Feedback is not required once IAPIa=l is below IATIa=1
where IAPIa=1 jw + .15 see figure 4.2. Since thea=1 jw + .015 ' -

variation in the overall transfer function is due to the

variation in the plant, once the plant variation is be-

low the allowed variation of the transfer function no

further control over the plant is required to hold it

there. Now the example has been completely defined con-

sisting of a set of time domain boundaries and a plant

with RHP zero and LHP pole variations. The remainder of

this example will show how the design technique is ap-

plied to this type of problem and how well it solves

the problem.

IAP(j W)

db

w =.25 log w

Figure 4.2 Range of w Requiring Feedback
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The first step in using the Horowitz-Sidi design

technique is to arrive at a set of boundaries on the

loop transmission L (jw) where P (jw) is the plant at a

set of parameters yielding maximum phase lag at all fre-

quencies. If the compensation G that is used with this

P1 yields an L1 which does not violate the disturbance

damping region and is stable, then the plots of the

other L's resulting from all other sets of plants para-

meters will be to the right of L1 on the Nichols Chart.

This means that for all plant conditions, the resulting

L is stable and has at least the required damping of a

disturbance. This is why this P1 is used in the design.

In this problem /P(jw) can be expressed as:

/P(jw) = 900 - tan - 1 - tan-1
a b

It is clear that the most phase lag is available when

both a and b are at their minimum conditions, i.e.,

a = 1, b = .015. The design technique indicates that a

design for the smallest value of the RHP zero will work

as the zero varies. Therefore the smallest value of "a"

will be the only value of concern throughout the design.

A program implementing the Horowitz and Sidi tech-

nique was used to yield a set of L1 boundaries that

meet the input IAT(jw) specifications by using a plant

template that describes the allowed plant variation.

(Figure 4.3) Any compensation which in connection with
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P (jw) yield a set of magnitude and phase values of

L(jw) that fall above these boundaries at all frequen-

cies will more than meet the allowed IAT(jw) varia-

tions. The L(jw) meeting all the boundaries is found by

trying various pole zero combinations with the RHP zero

at its lowest value until an acceptable solution is

found.

Also shown in figure 4.3 is a small elliptical

shaped region near the -1800, Odb point. If there is a

disturbance in the system, it must be damped out. If

the damping can be approximated by that of a pair of

dominant complex poles, the damping factor z can be re-

lated to the disturbance overshoot that can be allowed.

This z can then be related to a magnitude peaking curve

which shows up as a region on the Nichols Chart. The

region used here is approximately a 3db curve and cor-

responds to an allowable 25% of disturbance overshoot.

The optimum L(jw) would fall on each L-boundary at

each frequency and follow the 3db boundary without

entering it. Using the trial and error method of design,

this is the most time consuming portion of the design.

As the frequency approaches that of the RHP zero, phase

lag is introduced with gain. This makes it extremely

difficult to stay below the 3db region. If feedback is

required at half or three-fourths the value of the RHP

zero, it may be impossible to find an L(jw) that acts

in the desired manner.
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The L1 (s) for this example is

-640000(s-1) (s+.15)(s+.015) (s+.4)

s(s+.015) (s+100) (s+.02) (s+.24)

S2+.22s+.0625) (s2+1.4s+1) (s 2+.105s+.005625)
L12 (s) 2 2 2(s +.35s+.065)(s +1.85+1)(s +.135s+.005625)

L1 (s) = L 1 1 (s)L 1 2 (s)

Once a suitable L (s) is found, it is necessary to

solve for the required compensation G(s). This is done

as follows:

L 1 (s)
L 1 (s) = G(s)P(s) => G(s) P (s)

For this problem, the following G(s) resulted:

-640000. (s+.15) (s+.015) (s+.4)
G11 3(s+100) (s+.02) (s+.24)

2 2 2
(s +.22s+.0625)(s +1.4s+l)(s +.105s+.005625)

G2 2 (s) = 2 2 2(s +.35s+.065) (s +1.8s+l) (s +.135s+.005625)

G(s) = G1 1 (s)G 2 2 (s)

If this were the optimum G(s), yielding an L(jw)

on the boundaries at all frequencies, it would yield a

IAT(jw) , as the parameters of P varied, which would be

identical to the IAT(jw) specified. Since all points of

L(jw) are on or above the boundaries, the resulting

IAT(jw)I for the example, call it IAT21, should be the

same or less than that specified, called IAT1I. Figure

4.4 compares these two curves. It is clear that the
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curves are not as expected. The error is not in the

method of designing for the smallest zero since the zero

has not been allowed to take on any other values. After

examination of the program which finds the roots of T(s)

from L(s), an error is clear. This program takes the

roots of L(s) and outputs the poles of T(s). For one run

there is a pole and a zero of L at .015 and therefore

there should be a pole and a zero of T(s) at the same

point. The program says the pole is at .0155 instead of

.015. This error alone leads to a IAT2 1 that is in error

by easily the amount encountered. The method used by the

subroutines of this program lead to a significant error

when poles are used at such low frequencies. Since there

is an error, but an unavoidable one for this example,

the example will continue. This error does not appear

to be a significant one.

The final step in the design is to find the prefil-

ter that will put the variation in the shape and band-

width of the allowed region indicated by the components

of IAT1 . The compensation G holds the plant variation

to an acceptable value and F shapes it to match the T1

specifications. From the equation below, a way of cal-

culating F(s) is to use the maximum curve making up

IaT11 and subtracting the maximum curve of IAT2 1 in

decibels. This difference can be realized by some F(s)

that will make the curves coincide. If the optimum G(s)
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had been obtained,

F(s)L(s)
T1 ( s ) = F(s)1 + L(s) = F(s)T 2 (s)

T1 (j)
IF(jw)i =

T2T(jw)

IF(jw) Idb = ITl(jw)Idb - IT 2 (jw) db

this F(s) would force the minimum curves of T1 and T2
to be the same also since IAT1l = IAT2 1 in this ideal

case. Since the G(s) used is only close to ideal, two

prefilters would result, but they are so close to being

the same that either should yield a satisfactory res-

ponse. Figure 4.5 shows these curves and the F(s)

realized which was:

F(s) = 53.352 (s2 + .26s + .0625)
2 2(s+2) (s+3) (s2 + .35s + .0625)

Now the design for the closed loop structure of figure

1.1 is complete. Figure 4.6 shows the step responses of

the system under various plant conditions. It is clear

the design worked very well. The allowed region varia-

tion is utilized to the fullest and all responses are

acceptable.

Some things should be pointed out about the example.

Usually the simplest problem is gain variation, but this

was not possible here. The specifications on IAT1l were

so low in this frequency range that only an extremely
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low gain variation could be used. Since it would be so

impractically smallit was left out of this example.

Another example with larger tolerances must be worked

in order to demonstrate the technique's validity in

problems with gain variation.

This example was to design over a range of RHP

zeros where the IAT(jw) specifications vary greatly.

Variation from one to eight demonstrates how correct the

premise is of designing for the smallest zero. If the

specifications were RHP zeros from three to eight where

the tolerances are almost constant, there could still be

doubt in the usefulness of the theory here extended. A

range of specifications will not be of main concern in

the next example since this one showed how effective

the design technique is.

Another example will therefore be worked in this

area to investigate gain variation. A higher frequency

range will be worked with to diminish the effect of

errors encountered in the subroutines of the program

that finds the roots of T(s).

This should help clarify whether the subroutines

are the cause of the error or not. Also another example

will stress the effectiveness of the method. Modeling

time domain boundaries by a third order transfer func-

tion gave a very adequate set of frequency specifica-

tions on IAT(jw)l.



CHAPTER V

SECOND EXAMPLE

Whereas the first example was concerned purely with

verifying the design theory be designing over a range of

specification variation, this example was to answer other

questions. The first example, although verifying the de-

sign technique, had raised some questions that needed

more than a possible explanation. First, was the exces-

sive variation of the designed transfer function (IAT2 1)

really caused by the inaccuracy of the subroutines of

the root finding program? Second, gain variation was im-

possible due to the low specs that had to be met in the

first example. Does the design method work for gain

variation, or are further problems encountered? To an-

swer these questions, this example has gain variation

and deals with a higher frequency range to help decrease

the error in the subroutines.

This example uses the same time domain specifica-

tions as the first example, but the plant is changed to:

aE[3,8]

P(s) = K(s-a)
P(s) s(s+b) where Ke[1,2.2]

bE[.075,.75]

This plant needs feedback to meet the design specs up to

a frequency of .72 RPS. This was found by seeing where

the IAPIdb specs become lower than allowed IATlIdb
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specs (Figure 5.1).

The next step is to find the L-boundaries for the

plant over this frequency range. These are found by the

program implementing the Horowitz and Sidi method and

are shown in figure 5.2. Also shown in the figure is

the region that must be avoided in order to permit only

25% overshoot of a disturbance signal.

Finding a loop transmission L(s) that meets these

boundaries is the most difficult part of the design.

The optimal solution is to meet each boundary at each

frequency and to come as close as possible to the for-

bidden region. Shown in figure 4.2 is a plot of the

db

I T1a =3

API a=3

og w

pi. r2.2(ijw+.75)
P ()a=3 1(jw+.75)

Figure 5.1 Frequency Range Requiring Feedback
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L(jw) found for this problem. A much better L(jw) can be

found but requires a great deal more effort by the trial

and error method employed. The loop transmission found

s-3 is.
suitable for P (s) = s(s+.075)-3

2 2
-140000.(s-3) (s+.75)(s +2.66s+3.61)(s +9.8s+49)

1 3 2 2s(s+.05)(s+100) (s +1.52s+3.61)(s +5.6s+49)

Now the required compensation G may be found as

follows:

L1 (s)
L 1 (s) = G(s)P 1 (s) => G(s) = Ps

For this problem:

2 2
-140000. (s+.075) (s+.75) (s +2.66s+3.61) (s +9.8s+49)G(s) = 3

(s+.05)(s+100) (s2+1.52s+3.61)(s 2+5.6s+4.9)

Using this compensation and allowing the plant parameters

to vary throughout their entire range, holding a = 3,

will yield the actual variaton of the transfer function

IAT2 db. As in example one, the maximum component of

jAT 2 1 will be required to complete the design by solving

for the required prefilter F(s). Figure 5.3 compares

IAT2 and the specs of IAT11. If the L1 found in figure

5.2 had points on all the L-boundaries instead of some

above and some below, the plots of IAT1 and

IAT2 would be identical. When a point is above the

L-boundary, the IAT2 at that frequency will be below
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that for IAT11 and the opposite is also true. This was

the problem encountered in example one and thought to be

caused by errors due to the techniques used in the sub-

routines of root finding program. Note that the problem

is not encountered here as was hoped. Poles do not occur

at the low frequencies encountered in the first example,

and therefore if the subroutines were the cause of the

error they should not and do not lead to erroneous re-

sults here. This answers or at least supports the sus-

pected answer to the question concerning the origin of

the error encountered in the first example.

Figure 5.4 shows four things, the maximum component

of IATldb (TIm), the maximum component of IAT2Idb (T2m)'
the prefilter required FR, and the prefilter realized

FA . As before, FR is simply the point by point subtrac-

tion of T2m from T1m as explained by:

L
T m
2m 1+Lm

FL IT I ITlI
T m => lFm m
lm 1+Lm Lm  T2m

1+L
m

IFjdb =Tlm db - IT2mdb.
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The prefilter found is:

F(s) = 3.49(s+2.5) 2(s 2+.42s+.176)F(s2 2 2
(s+.7) (s+4) (s +.98s+.49)

Thus the design is now complete. Figure 5.5 shows exact-

ly what is meant by a prefilter F and compensation G

as to their part in the closed loop structure. To test

the design, all parameters were varied over their al-

lowed range and plots of their step responses were made.

Figure 5.6 shows that again the design technique works

perfectly. The allowed time response region is utilized

to its fullest as the economical design should.

This example accomplished two things. First, it

again verified how well the design technique functions

when applied to a problem. Second, it helped answer the

questions that prompted a second example. The inaccuracy

F(s) -G(s) P(s)

C(s)T(s) R(s)

L(s) = G(s)P(s)

Figure 5.5 Closed Loop Structure
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of the subroutines of the root finding program at very

low frequencies certainly seems to be the cause of ex-

cessively large variation of IAT2 1 at certain frequen-

cies in the first example. The design technique works

for gain variation without introducing any complications.

The example again strenghtened the feeling that a
amin.

design for a system requiring feedback up to w =

is not an easy problem, but is a workable one. A problem
amin

requiring feedback up to -n will be much more difficult

if the trial and error method is used to find the L

meeting the required L-boundaries. This is the only dif-

ficult part of the design and requires time in exponen-

tial proportion to the accuracy desired.



CHAPTER VI

CONCLUSIONS

The first design method presented in this paper is

not very useful in the majority of real world problems

because of its inability to handle variation of the

right-half-plane zero. Its technique may yield a more

general method or at least give some insight in the

problems encountered in a nonminimum-phase problem.

The second method is very effective in presenting

an a priori design technique for a plant with one right-

half-plane zero and the plant is not a function of the

right-half-plane zero in any other way. Necessary exten-

sions of this method are to handle multiple right-half-

plane zeros and plants that depend on the right-half-

plane zeros in more complicated ways than just having a

zero there, i.e., gain is a function of the position of

the zeros.

Some of the simplicity of this method may be lost

when these extensions are made, but this method allows

an insight into phases of the design which point out

short cuts. For example, it made it clear that under

certain circumstances a design for one position of the

zero will work for all variations. It also facilitated

the presentation of criteria explaining when a design is

not possible by this method. It seems very likely that a

pursuit of the nonminimum-phase problem along these

lines may yield a general design technique.
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Appendix A

DIGITAL COMPUTER IMPLEMENTATION OF TIME DOMAIN TO

FREQUENCY DOMAIN TRANSFORMATION

A.1 General Description

The program which yields the IATI specs necessary

to make the design and the maxima and minima curves of

T to calculate a prefilter F is presented here. It is

coded in FORTRAN IV source language and has been exe-

cuted on a Control Data Corporation 6400 computer. A

series of IF STATEMENTS in the subroutine INVLAP de-

scribe the step response boundaries. A "hit" is a res-

ponse that at some time came to within ±.01 of the

boundary without ever exceeding this tolerance. This

tolerance and the amount the complex pair of poles are

incremented each time can be adjusted to suit the ac-

curacy desired.

The program varies the complex poles of

2,2 20
(s-a)( )n

T(s) = -a
2 2(s + 2zw s + W )(s+20)n n

and finds the region of pole variation that yields step

responses within the boundaries. It will print out the

first and last set of parameters giving satisfactory

responses for a given real value of the poles, varying

the imaginary part. The sets of parameters that yield

"hits" are also printed out. Finally the program prints
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out the maximum, minimum, and difference of the magni-

tude and phase bode plots of all the hits. All this in-

formation provides the insight necessary to design for

one set of parameters and yield satisfactory responses

as the parameters vary.

The following is a logic flow chart of the program

and a complete listing of the program with a sample set

of output.
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A.2 Flow Chart of Time to Frequency Domain Transformation

START

INITIALIZE CONSTANTS

READ ZERO - RHP

is
4YES

ZERO < .1 STOP END

[INITIALIZE REAL PART OF COMPLEX POLE PAIR

INTIALIZE IMAGINARY PART OF COMPLEX
POLE PAIR

INCREMENT REAL PART BY .1 Print Last,

zWn

INCREMENT IMAGINARY PART BY .05
CALCULATE HIGH FREQUENCY GAIN

CALCULATE TIME RESPONSE

IS HIS FIRST
NOSTEP RESPONS IN RESPONSE FOR

IN BOUNDS THIS REAL
? PART

YES ?

NO
FIRST

II

NO IME WITH THI i NO
REAL PART IMAGINARY

ART > 15

YES

PRINT FIRST, z, n YES
PRINT OVER 15

is FIND MIN & MAX OF

NO A BODE PLOTS OF ALL HITS
IT

YES PRINT MIN, MAX, AND A
PRINT HIT, z, w n  OF MAGNITUDE & PHASE

STORE z, Wn FOR BODE PLOTS
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A.3 Program Listing

PROGRAM TEST2(INPUTtOUTPUT)
DIMENSION RD(20).RN(20),A(1Olt9)tCN(20)P(5),Z(5),pC(210O),
2B(101v9).DAT(200 o4)ZC(2.10)
COMPLEX RN9RD

10 ITEM-2
CN(I)aO,
IFINIEO
A(lel)u.l
RD(1)NCMPLX(O.O,00 )
RD(2) CMPLX(-20.090.0)

20 READ 900,ZERO
900 FORMAT(F10.6)

PRINT 901,ZERO
901 FORMAT(I1XF10.6)

IMIT=I
IF(ZERo *LE. .1) G0 TO 500
IFINIIFINII1
RN(I)SCMPLX(ZEROO.0)
POLERa.3

30 POLEI=O.
POLEROPOLER*.1
FRSTwO.

35 POLEI*POLEI,.05
INmO
RD(3)=CMPLX(-POLERt-POLEI)
RD(4)CMPLX(-POLERPOLEI)
SFm -(20./ZERO)*(POLER**2*POLEIe*2)
CALL INVLAP(SF*RD49RN1pCN9100OO.1loPOLERPOLEIDATPRETtZEROtA

ZITEMlMITINtFRST)
IF(RET-3.)35.30,40

40 ITEM1SIHIT-1
DO 39 1=1100
A(1#2)m-1000.
A(,3)*l000.
B9(I2)a-1000.

39 @(1,3)wl000.
00 100 IsmlITEMl
P())DAT(19t)
Z(1)SDAT(I#2)
PC(1l1)*DAT(I,3)
PC(291)uDAT(It4)
0.1.
NPwl
NPCIl
NZ*1
DEL.I1
NZCwO

CALL BODE(StGoN NPPCoPCNZZtNZCtZCoDBtQtDELoA,8)
100 CONTINUE

INOWUIFINI*3
DO 200 I1l,100
A(loINOW)=A(It2)-A(I,3)
a(vIlNOW)=B(IZ2)-B(I3)

200 CONTINUE
600 PRINT 910

00 1300 1-.100
PRINT 905.(A(ItJ).Jult4),(B(IJ)tJ2,4)

300 CONTINUE
905 FORMAT(IX,7F13.4)
910 FORMATIMI)

PRINT 910
00 TO 10

500 CONTINUE
990 END
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SUBROUTINE INVLAPtSFRDNDRNNNCNNTODTKtPOLERoPOLEDATRET
2ZEROtAtITEM.HIT#NIN#FRST)

COMMENT ROUTINE EVALUATES THE INVERSE LAPLACE TRANSFORM OF A RATIONALC FUNCTION AT NT POINTS AT INTERVALS OT,
C INPUT FORMS
C K6l9 SF*((S.RNI))*e.*(S-RN(NN)))/(S-RD(1))*e.,e*(SRD(ND)))
C K2, SF*(S**NN*C(2)S**(NN(NN1*).....C(NN eS*C(NN*1))/-
C (I(SRD(1))*.,e*(S-RD(ND))).

DIMENSION CN(2 0 )ROZD0)tRN(20)RES(20)OAT(2004)oA(t0199t;
COMPLEX CTI# RD, RNo RES
INTEGER HIT
HITmO

I FORMAT(IN IIOXO*IMAGINARY PART OF TIME RESPONSE OUT OF LIMITS AT
2T*8,F10*4* CT=*92E12.5)
00 t7 IleND
RES(I)SF
IF(NNiEQ.O) 00 TO 6
00 TO(294)PK

a 00 3 J.lNN
3 RES(I)RESI)*(RD(I).RN(J)

60 TO 6
4 RES(I)m(RDII)*CN(2))

00 S J2,INN
5 RES(I)mRES(I)*RD(Il.CN(Jl1)
RES(I)SF*RES(I)

6 DO 7 JulND
PFtEQJ) 0 TO 7
RES(I)mR[S(/(I)(RD )-RO(J))

'7 CONTNUE
TIuA(tl)
00 9 IslNT
CT1iOo
008D JmJ1ND

8 CTeCTIIRESJeIJ XP)TI)REAL(RDO()))*CMPLX(COSITI*AIMAG(RDIJ)))I
2SINCT1lAInAG|(RJ))))
IF(AA3(AIMAG(C i))BGTO.005*ABS(REALICTI))) PRINT ITICTIA(IZIo)Tl
Af(ItTEM)nREAL(CTI)

95 IF(Tl .G* 9*87) 60 TO 7SO
100 IFT1 .GEo (7.) .AND, A(IITEM) .LEs*(111).AND. A(IITEM)*GE.21.89))G0 O TO 00
102 IFIT1 ,OE, 7.) 30 TO 125
105 IF(T1 *GE(i4o)*AND.A(I*ITEM)*LE.(1.21).AND.A(IITEM)oG,6E(64))

260 TO 600
107 IFIT1 .GE. 4A) 00 TO 125
110 IF(TI*GE.(3.).AND.A(ItITEM).LE*(1*

2 1 ) *AND. A(IeITEM) ,GE
21,31667*T1-,63)) 0 TO 500

112 IF(T1 ,GE. 3.) 60 TO 125
115 IF(TI OGE. (-) oAND* A(IlTEM) LE. (.4*T1**O01) *AND. A(IITEM)2.GE6 (.3166e*Tl-*63)) 0GO TO 400
117 IF(TI ,GE* 1.) 00 TO 125
120 IF (A(ItITEM) .*GE (-*31) .AND. A(IPITEM) aLE. (o4*T1*0o1))260 TO 300
125 HITO

IF (FRST LE. *5) 00 TO 130
127 OMEGAsSORT(POLERe**2POLEIt) -

ZETANPOLER/OMEGA
PRINT 971PPOLER,POLEIZETAOMEGA

971F ORMAT(IXtS50REAL6 FIOe63XSHIMNAGmtFIOe6t3Xt5NZgTAs f0oo.X, ...26OMOAWFIO,6,X#4HLAST/)-. 
. ,FRSTsO.'

RET93.
00 TO 1S

130 IF (POLEI .oE. 15s) 0 TO 150
1351?F IN eEL. 21 00 TO 3 70
145 00 TO 10
150 RET , -

PRINT 973
973 FORMAT(IXt13MPOLEI OVER 15//) . . .
1s5 60T o Is
3 IF Ael, T2m) oLE .O29)oR AI,TEM) or.. ("011 T.310 IfIAIN'.LE 2) 60 TO E MIT64-
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320 60 TO 9
350 INw4

60 TO 9
370 INwO

00 TO 10
400 IF (AlITEM) *LE. (.3166TTl1-.6066?) .OR A(IITEM) .OE.

21.4*T1.*01)) MIT44
410 00 TO 310
500 IF; (AItITEM) *LE* (*31667*Tl-*60667) *ORe A(IoITEM) *GEs (1191))

2HIT4
SOS 00 TO 310
600 IF (AIoIeTEM) L.E* (*66) .OR. A(ZlITEM) .GE. (1.19)) HITs4
605 60 TO 310
D0 iZFAIITEM) *LE. (.91) .OR. A(IlITEM) .oE. (1.09)) HIYT4 '
0T5 00 TO 310

750 IF (FRST .E*. (.S)) O0 To 775
OMEGAISQRT(POLER**E*POLEI*2)

I ZETANPOLER/OMEA
PRINT 970,POLER,POLEItZETAOMEnGA

970 FORMAT(IX5HREALFO.*63es5MIMAgAFI0.6t3XtSHZETABPlO.6S3X
26MOMEGAuPFl0.64AX95MFIRST)
FRSTal,

775 IF (MIT .LE. 2) 00 TO 10
780 OMEGAwSQRT(POLER**2*POLEI*e2)

ZETAIPOLER/OMEGA
PRINT 972*POLER,POLEIZETAOMEGA

972 FORMAT(1X,5HREALmF106,93XtSHIMAG,F10.6,3X15MZETAOP10.63X,
26HOMEGAF1O*6t4x93MNITv/)
HITUO
DAT(IHIT1)20.
DAT(IMITE2)s-(ZERO)
DAT(IlIT3)mZETA
DAT(IMITt4)UOMEgA
IHITuIHIT+1

9 T1mTI1DT
10 RETme2
15 RETURN

END .

SUBROUTINE BODE(StONPPiNPCPCNZoZNZCoZCeDBQeDELeAB)
COMMENT SUBROUTINE EVALUATES RATIONAL FUNCTION AT S*
COMMENT POLEssPII) ZEROSmZ(I)o COMPLEX POLESuZETAOMEOAnpC(,ltI)tPC(aI)
COMMENT COMPLEX ZEROSuZETAONMEGAEZC(1iI)ZC(2,Ili ERROR CONSTANTaGo

DIMENSION P(I)I(l)tPCIZoIO)tZC(2O10)tA(101*3)gB(lOl3)
PI3*,1615927
DO 100 IBIDs1 00
SBS*DEL
B(IBIDI)aS

IFINP*LE.O) O0 TO 3
DO 2 ImlNP
IF(PII).E*OO) O0 TO 1
DB DB*Ptl)*02/(S2*P+P(I)*02)
QOQ-ATAN(S/PlI))
00 TO 2

1 08nDB/S* .
GNG*PI/2.

t CONTINUE
3 IF(NZ*LE.0) O0 TO 6

00 5 1 1,NZ
IF(Z(I).EOo.) O0 TO 4
DI' sD O UO*(*02*Z(lij* /Z(I)** . ,-
QuOsATAN(S/Z(II))
00 TO -4" 08 DBS**2

5 CONTINUE
I :, IP(NPC.LEO) G0 TO 9
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DO 8 Is.1NPC
DesDe*PCt2o**4/t(PCi2tI)**ES**eZ) **249*(PC(I2I)*PC(Il)*S)**2)
GQ0QATAN(2**PCIeI)*PC(2,z)e*S/PC 2 ,I)**2-S*2a))
IF(S.LEPC(2)) 00O TO 8
IF(PC(Iti).LT.D.) G0 TO 7
Q9;-PI

00 TO 8
7 QSQO*P
8 CONTINUE
9 IF(NZC.LE.O) 00O TO 12

DO 11 Iu1,NZC
OBDB*I(ZC(2tI)**EoS*2)e**2*44*(ZCllloZCg(a,)*SIJ*E)/ZCI)o*4
GQQ*ATAN(2**ZC(1,I)*ZC(2I)e*S/(ZC( 2 I)**2.So*) )
IF(S.LE.ZC(II)) 00O TO 11
IF(ZC(lII).LT.O.) 00 TO 10
G=Q*PI
00 TO 11

10 Q.Q-PI
11 CONTINUE
12 DBSSGRT(A5S(DB))

IF (DB .GT. 0.) 00 TO 13
PRINT 9371810D

937 FORMAT(IOX9l10,/)
PRINT 901eP(i1)Z(1),pCll,)qPC(21)

901 FORMAT(1Xt4FI0.6)
13 RODB*COSgQ)

AMDBO*SIN(G)
D0820.*ALOGIO1Dg)
Q*O180o./PI
IF(AIBIDIO ) .GE. OB) 00 TO 50

45 A(IBID*2)nOB
50 IF(A(IBID3) .LE. DO) GO TO 60
55 A(IBID93)mDB
60 IF(B(8O10 2) *GE o) GO TO 70
65 8(IBID,2).Q
70 IF (9(1B10*3) *LE* 0) 00 TO 80
75 8(1IOD3)uQ
@0 CONTINUE
100 CONTINUE

RETURN
i END

30000000
REAL= *400000 IMAGO .350000 ZETA. .752577 OMEGAs *531507 FIRSTREAL* .400000 IMAGs *750000 ZETA .470588 OMEGA. .850000 nIT

REALs .400000 IMAGO .80000 ZETAs *447214 OMEGA. .894427 LAST

REAL .500000 IMAGs .250000 ZETA .894427 OMEGA. *559017 FIRSTREAL. .500000 IMAGs .250000 ZETA= ,894427 OMEGA. .559017 HIT

REAL* *500000 IMAGS *950000 ZETAN o465746 OMEGA. 1.073546 HIT

REAL. .500000 IMAGS 1.000000 ZETA. *447214 OMEGA. 1.118034 LAST
REAL8 .600000 IMAGS .050000 ZETA* .996546 OMEGA. .602080 FIRST
REALs  

600000 IMAGe .050000 ZETA. 0996546 OMEGAs .602080 NIT

REAL *.60000 IMAGs *100000 ZETA. *986394, OMEGAs .608276 nIT

REALm o600000 IMAGO 1.000000 ZETA* *514496 OMEGA.. 1.166190 LAST

REAL* o700000 IMAG *050000 ZETA. *997459 OMEGAs *701783 FIRSTREAL* *700000 IMAG. 1.000000 ZETAs *573462 OMEGA. 1.220656 LAST
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4.6000 -13.0853 -31.6625 18*5773 -20901365 -239.6341 30.4976.
4*7000 -13.2931 -31.9105 18.6174 :210:7718 -240,6945 29.9227
4.8000 -13.4970 -32.1523 18.6553 -212.3600 -241.7275 29.3676
4.9000 -13.6970 -32.3880 18.6910 -213.9031 -242.7344 28.8313
5.0000 -13.8933 -32.6181 18.7247 -215.4034 -243.7164 28.3130
5.1000 -14.0861 -32.8427 18.7566 -216.8628 -244.6746 27.8118
5.2000 -14.2754 -33.0622 18.7868 -218.2830 -245.6102 27.3271
5.3000 -14.4614 -33.2768 18.8154 -219.6659 -246.5240 26.8581
5.4000 -14.6442 -33.4867 18.8425 -221*0130 -247.4171 26.4040!5.5000 -14.8239 -33.6921 18.8682 -222*3260 -248.2903 2S99643:
5.6000 -15.0006 -33.8933 18.8927 -223.6062 -249.1445 25.5383
5.7000 -15.1745 -34.0904 18.9159 224.*8550 -249.9804 25.1254i
5.8000 -15.3456 -34.2836 18.9380 -226.0738 -250.7988 24.72501
5.9000 -15.5140 -34.4730 18.9590 -227.2638 -251.6004 24.336
6.0000 -15.6799 -34.65A9 18.9791 -228.4261 -252.3859 23.998
-65 7TD 0 -15.8"432 -34.8414- 18.9982 .. -229.5619 -2S3.1558 23.5939
6.2000 -16.0042 -35.0206 19.0164 -230.6721 -253.9108 23.2387
643000 -16.1628 -35*1966 19.0338 -231.7579 -254.6514 22.8936
6.4000 -16b3192 -35.3696 19.0504 -232.8200 -255.3782 22.5582
6.5000 -16.4734 -35.5397 19.0663 -233.8595 -256.0917 22*2322.
6.6000 -16.6254 -35*7070 19.0816 -234*8771 -256.7923 21*9152
6.7000 -16.7755 -35.8716 19.0961 -235.8738 -257*4805 21.6067
6.8000 "16.9235 -36.0336 19.1101 -236*8501 -258.1567 21*3066
.. 9000 -17.0697 -36.1931 19*1234 -237.8070 -258.8214 21.0145
7.0000 -17.2140 -36.3502 19.1363 -238o74S0 -259*4749 20.7300
7.1000 -17.3564 -36.5050 19*1486 -239.6648 -260.1177 2045S29
7.2000 -17.4972 -36.6575 19.1604 -240.5671 -260.7500 20.1829
7.3000 -17.6362 -36.8079 19.1717 -2410424 -261.3721 '19.9197
7.4000 -17.7736 -36.9562 19.1826 -242.3214 -261.9845 19.6632
7.5000 -17.9094 -37.102S 19.1931 -243@1745 -262.5875 19.4130
7:6000 -18.0437 -37.2468 19.2032 -244.0123 -263.1813 19.1689
7.7000 -18.1764 -37.3893 19.2129 -2448353 -263*7661 1189308
7*8000 -18.3077 -37.5299 19.2222 -245;6440 -264.3424 18.6984
7.9000 -18.4375 -37.6687 19*2312 -246.4388 -264.9103 1804714
890000 -18.5660 -37*8059 19*2399 "247*22o2 -265.4700 18*2496
8.1000 -18.6931 -37.9413 19*2482 -247*9885 -266*0219 18.0334
8.2000 -18.8189 -38.0752 19*2563 -24807442 -266.5661 17.8219
8.3000 -18.9434 -38.2075 19.2641 -24994876 -867*1028 17.6152.
8*4000 P19.0667 -38.3383 19.2716 -250*2192 -267.6323 17*4131
85S000 ,19.1888 -38.4676 19.2788 *250.9392 -268*1548 17.2156
8.6000 -19.3097 -38.5955 19.2858 "251.6480 -268.6704 17.0224
8.7000 -19.4294 -38,7221 19.2926 "252?3459 -269.1793 16.8334
808000 -19.5481 -38.8472 19.2992 -253*0332 -269.6817 16.6485
8.9000 -19.6656 -38.9711 19.3055 "253*7103 -270.1778 16*4675

(It


